News

COMPACT ELECTROMECHANICAL CYLINDERS SERIES 3E

Sizes 20, 32

- Flexibility
- Ease of use
- Reduced commissioning times
- Increased machine efficiency and productivity

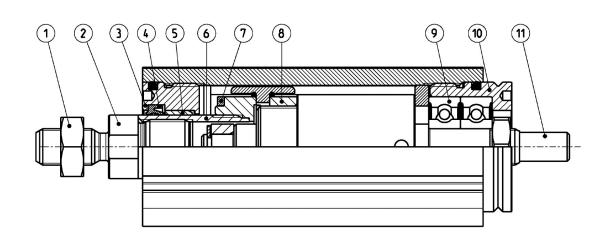
Series 3E cylinders are electric rod actuators that combine a screw and motor to generate accurate linear motion. These are an alternative to pneumatic cylinders but possessing all the benefits of electric actuators in terms of speed, ease of parameter setting and flexibility in handling different load sizes and formats. Their compact design ensures easy integration with the machine, without affecting performance. Robust and quick, these actuators are ideal for multi-position applications and can be used with external proximity switches for homing operations or allowing extra-stroke readings to be performed.

Moreover, Series 3E can be supplied with the motor already assembled, to further reduce commissioning and wiring time. Series 3E electromechanical cylinders are the ideal solution for industrial applications that require rapid format changeovers or numerous production cycles. Their precision, reliability and flexibility, make these cylinders ideal for use in assembly lines, packaging systems or for material handling.

GENERAL DATA

electromechanical cylinder with recirculating ball screw
profile with thread rolling screws based on the ISO 15552 standard
multi-position actuator with high precision linear movement
20,32
10 ÷ 500 mm
with anti-friction pads in technopolymer
front flange, foot mounts, clamps or front / rear / swivel trunnion
in line and parallel
0°C ∻ 50°C
-20°C ÷ 80°C
IP40
not necessary. A pre-lubrication is performed on the cylinder
<± 0,02
100% (if supplied with motor already assembled, the duty cycle depends on the motor selected)
$\pm 0.4^{\circ}$
slots on four sides for sensors model CSD

CODING EXAMPLE


38	E 020 BS 0100 P10 M
3E	SERIES
020	SIZE 020 = 20 032 = 32
BS	TRANSMISSION BS = recirculating ball screw
0100	STROKE See table of mechanical characteristics
P10	SCREW PITCH PO3 = 3 mm P10 = 10 mm
М	CONSTRUCTION M = male F = female
	EXTENDED ROD () = rod extended with mm

MECHANICAL CHARACTERISTICS

		Size 20	Size 20	Size 32	Size 32
Pitch "P"	[mm]	3	10	3	10
Dynamic load coefficient "C"	[N]	2100	1875	2800	2500
Average load ^(A)	[N]	177	236	236	315
Max torque applicable to screw's shaft	[Nm]	0,42	1,41	0,53	1,77
Max force applicable ^(B)	[N]	800	800	1000	1000
Max linear speed cylinder ^(B)	[m/s]	0,4	1,3	0,4	1,3
Maximum rotation speed of the cylinder shaft	[rpm]	8000	8000	8000	8000
Max accelleration of cylinder	[m/s ²]	25	25	25	25
Min Stroke	[mm]	10	25	10	25
Max Stroke	[mm]	300	300	500	500

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

^(h)Value refers to a covered distance of 5000 Km (see the diagrams "Life of the cylinder according to the average axial force applied"). ⁽ⁱⁱ⁾This parameter varies as the stroke varies (see the diagrams "Maximum speed of the cylinder according to its stroke").

PARTS	Materials
1. Rod nut	Zinc-plated steel
2. Front coupling piece	Stainless steel
3. Front cap	Anodized aluminium alloy
4. Rod seal	PU
5. Bushing	Technopolymer
6. Rod	Stainless steel
7. Magnet	Plastoferrite
8. Guiding element BS screw	Aluminium alloy
9. Bearing	Steel
10. Rear cap	Anodized aluminium alloy
11. BS ball screw	Steel

ACCESSORIES FOR SERIES 3E CYLINDERS

ELECTRIC ACTUATION

90° male trunnion Mod. ZC

Rear female trunnion

Rod fork end Mod. G

Rear trunnion male Mod. L

Front flange Mod. D-E

Counter bracket for trunnion Mod. BF

Self aligning rod Mod.

Rear trunnion ball-joint

Mod. R

GK

Front/rear spot faced trunnion Mod. FN

Coupling piece Mod.

GKF

Foot mount Mod. B-3E

Kit for axial connection Mod. AM

Kit for parallel connection Mod. PM

Mod. C and C-H

HOW TO CALCULATE THE LIFE OF THE CYLINDER

To perform a correct dimensioning of the Series 3E cylinder, you need to consider some facts.

Among these, the most important are:

- Dynamics of the system
- Operation and pause cyclicity

- Work environment

- General performance requirements: repeatability, accuracy, precision, etc.

CALCULATE THE LIFE IN ROTATIONS where:

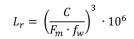
- L_r = Life of the cylinder in number of rotations of the BS ball screw
- C = Dynamic load coefficient of the cylinder [N]

F_m = Average axial force applied [N]

 f_w = Safety coefficient according to the working conditions (see table below)

CALCULATION OF LIFE IN km where:

 L_{km} = Life of the cyllinder in km [km]


p = pitch of the BS ball screw [mm]

CALCULATION OF THE LIFE IN HOURS where:

 $L_{h} = Life of the cylinder in hours$

 n_m = average number of revolutions of the RDS ball screw [rpm]

APPLICATION	ACCELERATION [m/s ²]	SPEED [m/s]	DUTY CYCLE	f _w COEFFICIENT
light	< 5,0	< 0,5	< 35%	1,0 ÷ 1,25
normal	5,0 ÷ 15,0	0,5 ÷ 1,0	35% ÷ 65%	1,25 ÷ 1,5
heavy	> 15,0	> 1,0	> 65%	1,5 ÷ 3,0

ELECTRIC ACTUATION

 $L_h = \frac{L_r}{n_m \cdot 60}$

ELECTROMECHANICAL CYLINDERS / 2024/10

COMPACT ELECTROMECHANICAL CYLINDERS SERIES 3E - CATEGORIA DA INSERIRE

ANALYSIS OF THE DUTY CYCLE AND OF SYSTEM PAUSES

The analysis of the duty cycle and of the pauses of the system is essential to calculate the average F_m axial loads and the number of average revolutions nm that act on the cylinder. Normally, the duty cycle is composed by phases and for each single phase, we can have an acceleration, constant speed or deceleration.

 $\rm F_m$ = CALCULATION OF THE AVERAGE AXIAL FORCE $\rm n_m$ = CALCULATION OF THE AVERAGE NUMBER OF REVOLUTIONS

The table shown below reports the values of acceleration, speed and deceleration for each phase.

 $F_{m} = \sqrt[3]{\frac{(F_{a1}^{-3} \cdot n_{a1} \cdot t_{a1}) + (F_{vc1}^{-3} \cdot n_{vc1} \cdot t_{vc1}) + (F_{a1}^{-3} \cdot n_{d1} \cdot t_{d1}) + \dots + (F_{an}^{-3} \cdot n_{an} \cdot t_{an}) + (F_{vcn}^{-3} \cdot n_{vcn} \cdot t_{vcn}) + (F_{dn}^{-3} \cdot n_{dn} \cdot t_{dn})}{(n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{d1}) + \dots + (n_{an} \cdot t_{an}) + (n_{vcn} \cdot t_{vcn}) + (n_{dn} \cdot t_{dn})}$

 $n_m = \left\{ \begin{matrix} (n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{d1}) + \ldots + (n_{an} \cdot t_{an}) + (n_{vcn} \cdot t_{vcn}) + (n_{dn} \cdot t_{dn}) \\ t_{a1} + t_{vc1} + t_{d1} + \ldots + t_{an} + t_{vcn} + t_{dn} \end{matrix} \right\}$

		F[N]	n [rpm]	time %	
PHASE 1	Acceleration Constant speed Deceleration	Fal Fvcl Fdl	nal nvcl ndl	tal tvcl tdl	
PHASE 2	Acceleration Constant speed Deceleration	Fa2 Fvc2 Fd2	na2 nvc2 nd2	ta2 tvc2 td2	
PHASE "n -1"	Acceleration Constant speed Deceleration	Fan-1 Fvcn-1 Fdn-1	nan-1 nvcn-1 ndn-1	tan-1 tvcn-1 tdn-1	
PHASE "n"	Acceleration Constant speed Deceleration	Fan Fvcn Fdn	nan-1 nvcn-1 ndn-1	tan-1 tvcn-1 tdn-1	
	TOTAL			100%	

APPLICATION EXAMPLE

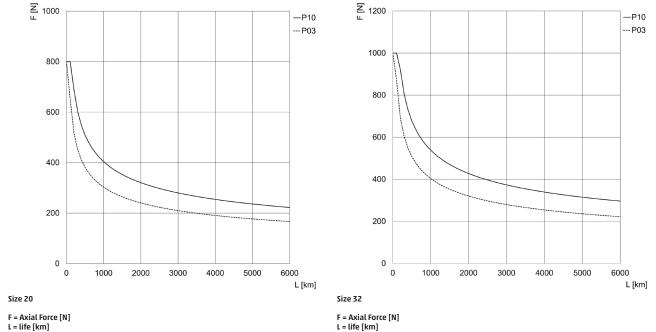
$\begin{array}{l} F_{a1} = 142 \ N; \\ n_{a1} = 630 \ rpm; \\ t_{a1} = 0,7 \ \%; \end{array}$	$\begin{split} F_{vc1} &= 98 N; \\ n_{vc1} &= 1260 rpm; \\ t_{vc1} &= 12,9 \%; \end{split}$	$\begin{array}{l} F_{d1} = 54 \ N; \\ n_{d1} = 630 \ rpm; \\ t_{d1} = 0,7 \ \%; \end{array}$		
$\begin{array}{l} F_{a2}=616N;\\ n_{a2}=450rpm;\\ t_{a2}=4,8\%; \end{array}$	$\begin{array}{l} F_{vc2} = 589 N; \\ n_{vc2} = 900 rpm; \\ t_{vc2} = 33,3 \%; \end{array}$	$F_{d2} = 562 N;$ $n_{d2} = 450 rpm;$ $t_{d2} = 4,8 \%;$		
$\begin{array}{l} F_{a3} = 997 \ N; \\ n_{a3} = 240 \ rpm; \\ t_{a3} = 7,1 \ \%; \end{array}$	$\begin{split} F_{vc3} &= 981 N; \\ n_{vc3} &= 480 rpm; \\ t_{vc3} &= 28,6 \%; \end{split}$	$\begin{array}{l} F_{d3} = 965 N; \\ n_{d3} = 240 rpm; \\ t_{d3} = 7,1 \%; \end{array}$		
$K_2 = (F_{a2}^3 \cdot n_{a2} \cdot t_{a2})$	$ + (F_{vc1}^3 \cdot n_{vc1} \cdot t_{vc1}) + + (F_{vc2}^3 \cdot n_{vc2} \cdot t_{vc2}) + + (F_{vc3}^3 \cdot n_{vc3} \cdot t_{vc3}) + $	$\left(F_{d2}^3 \cdot n_{d2} \cdot t_{d2}\right)$	$ \begin{split} n_1 &= (n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{d1}) \\ n_2 &= (n_{a2} \cdot t_{a2}) + (n_{vc2} \cdot t_{vc2}) + (n_{d3} \cdot t_{d3}) \\ n_3 &= (n_{a3} \cdot t_{a3}) + (n_{vc3} \cdot t_{vc3}) + (n_{d3} \cdot t_{d3}) \end{split} $	$\begin{split} T_1 &= t_{a1} + t_{vc1} + t_{d1} \\ T_2 &= t_{a2} + t_{vc2} + t_{d2} \\ T_3 &= t_{a3} + t_{vc3} + t_{d3} \end{split}$
$K = \sqrt{\frac{3}{(K_1 + K_2 + K_2)}}$	3) - E96 64 N			

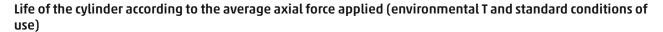
Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation grouduct range, please refere to our online catalogue at http://catalogue.camozzi.com/

 $F_m = \sqrt[3]{\frac{(n_1 + n_2 + n_3)}{(n_1 + n_2 + n_3)}} = 596,64 N$ $n_1 + n_2 + n_3 \qquad \text{(a)}$

 $n_m = \frac{n_1 + n_2 + n_3}{T_1 + T_2 + T_3} = 685,7 \ rpm$

		F [N]	n [rpm]	time %	
PHASE 1	Acceleration Constant speed Deceleration	142 98 54	630 1260 630	0,7 12,9 0,7	
PHASE 2	Acceleration Constant speed Deceleration	616 589 562	450 900 450	4,8 33,3 4,8	
PHASE 3	Acceleration Constant speed Deceleration	997 981 965	240 480 240	7,1 28,6 7,1	
	TOTAL			100,0	

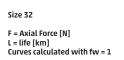


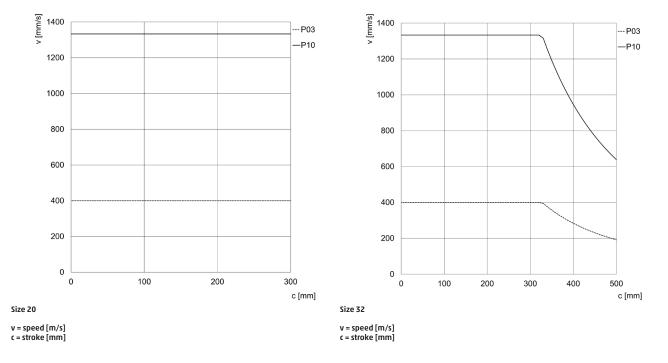

HOW TO CALCULATE THE DRIVING TORQUE [Nm]

F _A = Total force acting from outside [N] p = Pitch of the ball screw [mm] η = Performance C _{M1} = Driving torque due to external agents [Nm]	$C_{TOT} = C_{M1} + C_{M2} + C_{M3}$ $C_{M1} = \frac{F_A \cdot p}{2\pi \cdot 1000} \cdot \frac{1}{\eta}$
J _{TOT} = Moment of inertia of rotating components [kg·m ²] J _F = Moment of inertia of fixed-length rotating components [kg·m ²] J _V = Moment of inertia of variable-length rotating components [kg·m ²] K _V = Coefficient of inertia of variable-length rotating components [kg·mm ² /mm] C = Rod stroke [mm] $\dot{\omega}$ = Angular acceleration [rad/s ²] a = Linear acceleration of the ball screw [m/s ²] C _{M2} = Driving torque due to rotating components [Nm]	$J_{TOT} = (J_F + J_V) \cdot 10^{-6}$ $J_V = K_V \cdot C$ $\dot{\omega} = \frac{a \cdot 2\pi \cdot 1000}{p}$ $C_{M2} = J_{TOT} \cdot \dot{\omega} \cdot \frac{1}{\eta}$
F_{TT} = Force needed to move sliding components [N] F_{TF} = Force needed to move fixed-length sliding components [N] F_{TV} = Force needed to move variable-length sliding components [N] m_{C1} = Mass of the fixed-length sliding components [kg] K_{TV} = Mass coefficient of variable-length sliding components [kg/mm] C_{M3} = Driving torque due to sliding components [Nm]	$F_{TT} = F_{TF} + F_{TV}$ $F_{TF} = m_{C1} \cdot a$ $F_{TV} = K_{TV} \cdot C \cdot a$ $C_{M3} = \frac{F_{TT} \cdot p}{2\pi \cdot 1000} \cdot \frac{1}{\eta}$

Values of masses and fixed and rotating inertia moments of 3E components

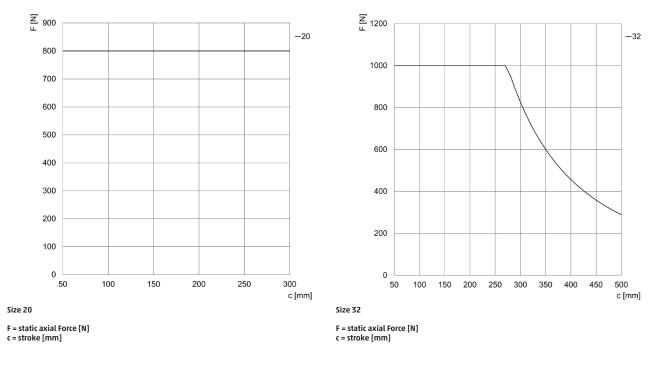
Size	J _F [kg·mm²]	K _v [kg·mm²/mm]	m _{c1} [kg]	К _т [Кд·т]	
20	2,1	6,13	0,12	0,46	
32	2,1	6,13	0,13	0,46	




L = life [km] Curves calculated with fw = 1

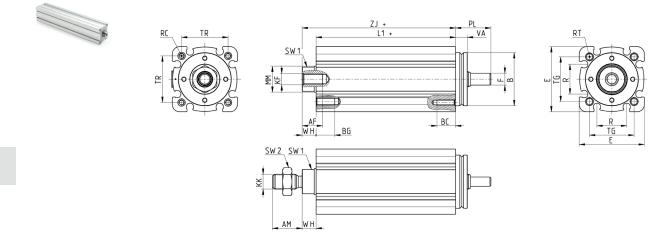
ELECTRIC ACTUATION

2



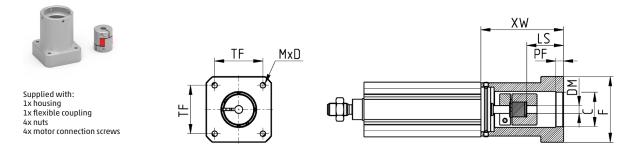
Maximum speed of the cylinder according to its stroke

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation grouduct range, please refere to our online catalogue at http://catalogue.camozzi.com/



For longer strokes than the standard ones or for extended rods, please contact Camozzi.

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/ COMPACT ELECTROMECHANICAL CYLINDERS SERIES 3E - DIMENSIONAL CHARACTERISTICS


Series 3E cylinders

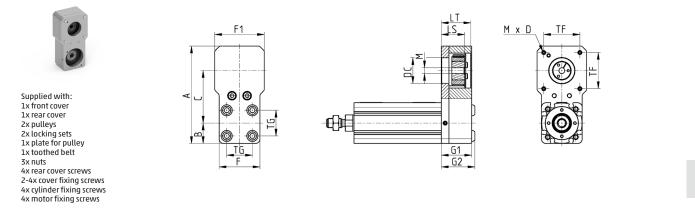
+ = add the stroke *Dimension not in compliance with ISO 15552 standard

Size	AM	AF	ø ^{B(h8)}	BG	E	ø F ^(h8)	KF	KK	L1 +	_ø мм	R	RT	PL	SW1	SW2	TG	VA	TR	RC	BC	WH	ZJ +	weight stroke 0 [g]	weight stroke [kg/m]
20	16	11	28,5	10	35	5	M6	M8x1,25	75	14	16	M4	19	13	13	24	6,5	25	M3	10	7,5	82,5	326	2,57
32	19	13	34	10	42	5	M8	M10x1,25	75	14	19	M5	19	13	17	32,5	5,5	32,5	M5	10	7,5	82,5	430	3,64

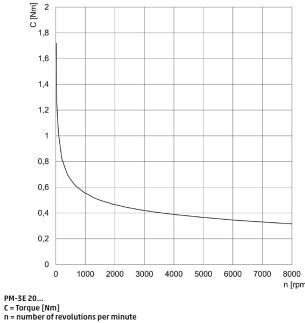
Kit for axial connection Mod. AM

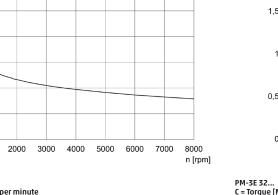
Mod.	Size	Protection	٥C	_ø DM	TF	MxD	PF	F	LS	XW	Nominal torque [Nm] ^(A)	Max torque [Nm] ^(A)	J[kgmm²]	Weight [g]	η
AM-3E-20-0017	20	IP40	22	5	31	Ø3,5x14,5	5	42	24	53	5	10	0,85	127	0,78
AM-3E-32-0023	32	IP40	38,1	6,35	47,14	M4x15	9	56,4	20	49	5	10	0,85	152	0,78
AM-3E-32-0024	32	IP40	38,1	8	47,14	M4x15	9	56,4	20	49	5	10	0,85	152	0,78
AM-3E-32-0100	32	IP40	30	8	31,8	M3x9	5	41,5	25	54	5	10	0,85	144	0,78

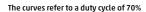
Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

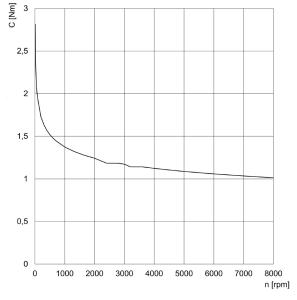

^(A)Continuously applicable torque, under ideal mounting and operating conditions. For further details, please contact service@camozzi. com ^(B)Torque applicable for short intervals, under ideal mounting and operating conditions. For further details, please contact service@ camozzi.com

ELECTRIC ACTUATION


2

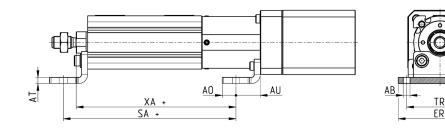

Kit for parallel connection Mod. PM


Mod.	Size	Protection	А	В	с	F	F1	TG	G1	G2	_ø DC	øМ	LS	LT	TF	MxD	J[kgmm²]	Weight [g]	η
PM-3E-20-0017	20	IP40	83,5	17,5	45	35	42,5	22	26	29	22	5	20	25	32	M3x4,5	3,96	218	0,62
PM-3E-32-0023	32	IP40	116,5	21	67,5	42	56,5	32,5	28	31	38,1	6,35	19	26,5	47,14	M4x6	5,84	390	0,62
PM-3E-32-0024	32	IP40	116,5	21	67,5	42	56,5	32,5	28	31	38,1	8	19	26,5	47,14	M4x6	5,84	390	0,62
PM-3E-32-0100	32	IP40	87	21	45	42	42	32,5	28	31	30	8	19	26,5	31,82	M3x6	5,82	245	0,62


TRANSMISSIBLE POWER KIT PM

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

PM-3E 32... C = Torque [Nm] n = number of revolutions per minute


COMPACT ELECTROMECHANICAL CYLINDERS **SERIES 3E - ACCESSORIES**

Foot bracket Mod. B-3E-AM

Material: zinc-plated steel

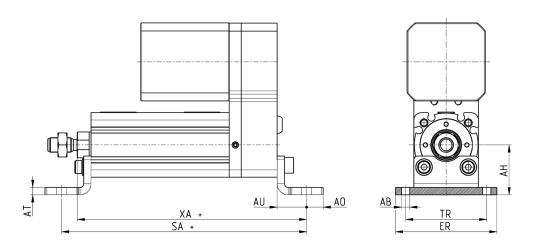
Supplied with: 2x foot brackets 4x screws

AH

ΤR

+ = add the stroke

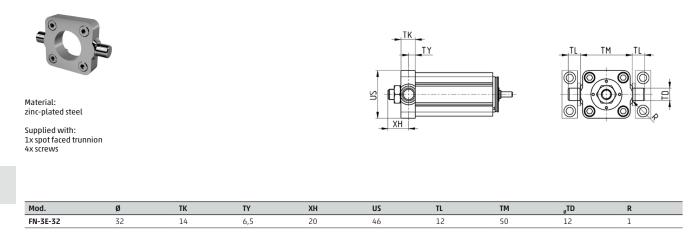
Mod.	Size	Compatible with	SA +	ХА	AH	TR	AT	AU	AO	₀AB	ER
B-3E-20-AM	20	AM-3E-20-0017	113,5	105	27	44	4	16	9	4,5	55
B-3E-32-AM-1	32	AM-3E-32-0023 / AM-3E-32-0024	109	100,5	36	52	4	16	9	4,5	62
B-3E-32-AM-2	32	AM-3E-32-0100	99	90,5	36	52	4	16	9	4,5	62


Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

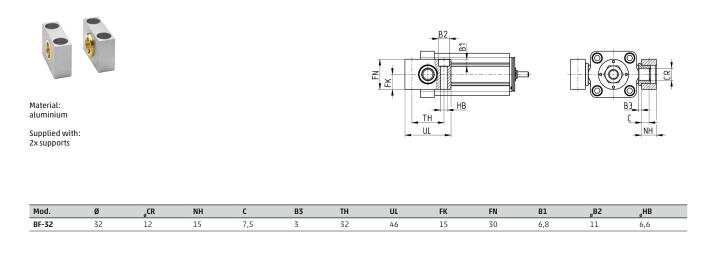
Material: zinc-plated steel

Supplied with: 2x foot brackets 4x screws

+ = add the stroke


Mod.	Size	Compatible with	SA +	XA	AH	TR	AT	AU	AO	_g AB	ER
B-3E-20-PM	20	PM-3E-20-0017	133	124,5	27	44	4	16	9	4,5	55
B-3E-32-PM	32	PM-3E-32-0023 / PM-3E-32-0024 / PM-3E-32-0100	135	126,5	36	52	4	16	9	4,5	62

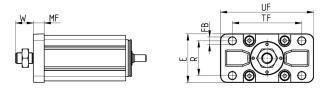
2


CAMOZZI ELECTROMECHANICAL CYLINDERS / 2024/10

COMPACT ELECTROMECHANICAL CYLINDERS SERIES 3E - ACCESSORIES

Front spot faced trunnion Mod. FN

Counter bracket for front trunnion Mod. BF

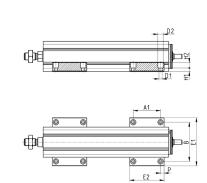


Front flange Mod. D-E

Material: aluminium for Ø 32

Supplied with: 1x flange 4x screws

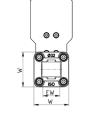
+ = add the stroke


Mod.	ø	W	MF	TF	R	UF	E	₀FB
D-E-3E-32	32	16,5	10	64	32	80	45	7

Side clamping bracket Mod. BG

Material: aluminium Supplied with

Supplied with: 2x clamps

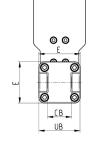

Mod.	ø	E1	E2	Р	A1	В	Screw	_ø D1	_ø D2	H1	HZ	Weight [g]
BG-3E-20	20	60	48	5	38	47,5	M4	4,5	7,5	5	5,5	31
BG-3E-32	32	67	48	5	38	54,5	M4	4,5	7,5	5	7,5	35

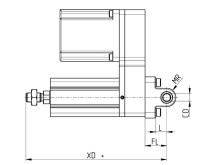

Rear male trunnion Mod. L

Material: aluminium

Supplied with: 4x screws 1x male trunnion 1x centering pin

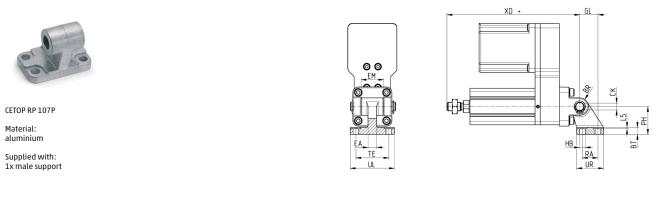
	+	=	add	the	stroke
--	---	---	-----	-----	--------


Mod.	Ø	۵CD	L	FL	XD +	MR	E	EW
L-3E-20	20	8	14	20	151,5	8	34	16
L-3E-32	32	10	13	22	151,5	10	46	16


Rear female trunnion Mod. C

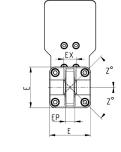
Material: aluminium

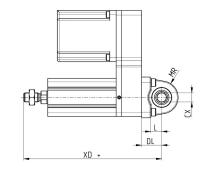
Supplied with: 1x female trunnion 4x screws



+ = add the stroke

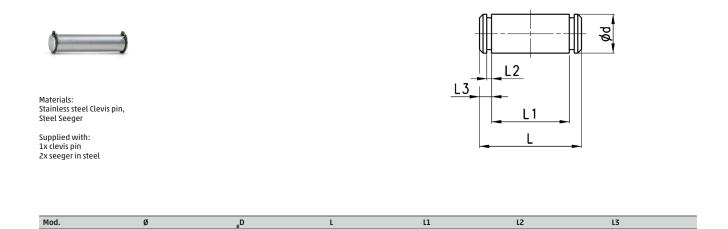
Mod.	ø	وCD	L	FL	XD +	MR	E	CB	UB	
C-3E-32	32	10	13	22	212	10	46	26	45	


90° male trunnion Mod. ZC



								+ = a	dd the stro	ke						
Mod.	Ø	_ø EB	«СК	"НВ	XD +	TE	UL	EA	GL	L5	RA	EM	UR	PH	BT	BR
ZC-32	32	11	10	6,6	212	38	51	10	21	1,6	18	26	31	32	8	10

Trunnion ball-joint Mod. R



					+ = a	dd the stroke					
Mod.	Ø	_g CX	L	DL	XN+	MS	E	EX	EP	Z	
R-3E-32	32	10	12	22	212	18	45	14	10,5	4°	

Clevis pin Mod. S

52

1,1

3

46

S-32

32

COMPACT ELECTROMECHANICAL CYLINDERS SERIES 3E - ACCESSORIES

ELECTRIC ACTUATION

2

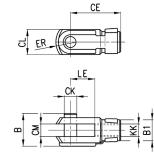
Swivel ball joint Mod. GA

ISO 8139 Material: zinc-plated steel

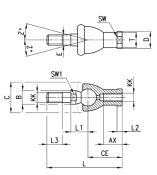
ER SW	-

Mod.	ø	_ø CN	U	EN	ER	AX	CE	КК	_р т	Z	SW
GA-20	20	8	9	12	12	16	36	M8x1,25	12,5	6,5	14
GA-32	32	10	10,5	14	14	20	43	M10x1,25	15	6,5	17

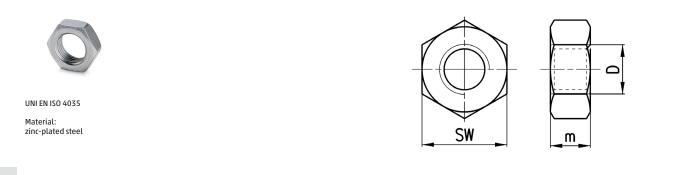
Piston rod socket joint Mod. GY


ISO 8139 Material: zama and zinc-plated steel

Mod.	Ø	КК	L	CE	L2	AX	SW	SW1	11	L3	σ	øD	E	øΒ	٥C	Z
GY-20	20	M8x1,25	65	32	5	16	14	10	16	12	12,5	13	6	10	20	15
GY-32	32	M10x1,25	74	35	6,5	18	17	11	19,5	15	15	19	10	14	28	15


Rod fork end Mod. G

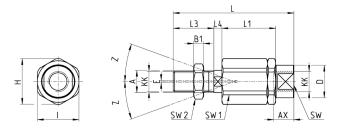
ISO 8140 Material: zinc-plated steel


Mod.	Ø	٥CK	LE	СМ	CL	ER	CE	КК	В	_g B1
G-20	20	8	16	8	16	10	32	M8x1,25	22	14
G-25-32	32	10	20	10	20	12	40	M10x1,25	26	18

CC ELECTROMECHANICAL CYLINDERS / 2024/10

COMPACT ELECTROMECHANICAL CYLINDERS SERIES 3E - ACCESSORIES

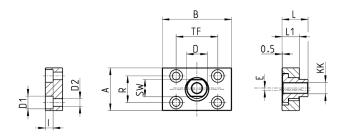
Piston rod lock nut Mod. U



Mod.	Ø	D	m	SW
U-20	20	M8x1,25	5	13
U-25-32	32	M10x1,25	6	17

Self aligning rod Mod. GK

Material: zinc-plated steel



Mod.	ø	КК	L	11	L3	L4	۹	øD	Н	I	SW	SW1	SW2	B1	AX	Z	E
GK-20	20	M8x1,25	57	26	21	5	8	12,5	19	17	11	7	13	4	16	4	2
GK-25-32	32	M10x1,25	71,5	35	20	7,4	14	22	32	30	19	12	17	5	22	4	2

Coupling piece Mod. GKF

Material: zinc-plated steel

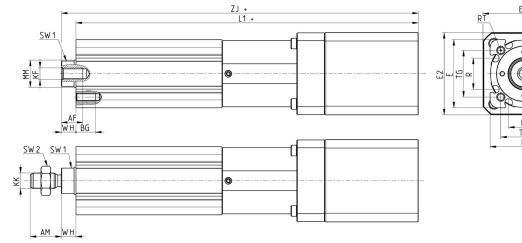
Mod.	ø	КК	А	В	R	TF	L	L1	I	øD	_ø D1	_g D2	SW	E
GKF-20	20	M8x1,25	30	35	20	25	22,5	10	-	14	5.5	-	13	1,5
GKF-25-32	32	M10x1,25	37	60	23	36	22,5	15	6,8	18	11	6,6	15	2

Cylinder supplied with assembled motor and standard accessories AM and PM.

CODING EXAMPLE

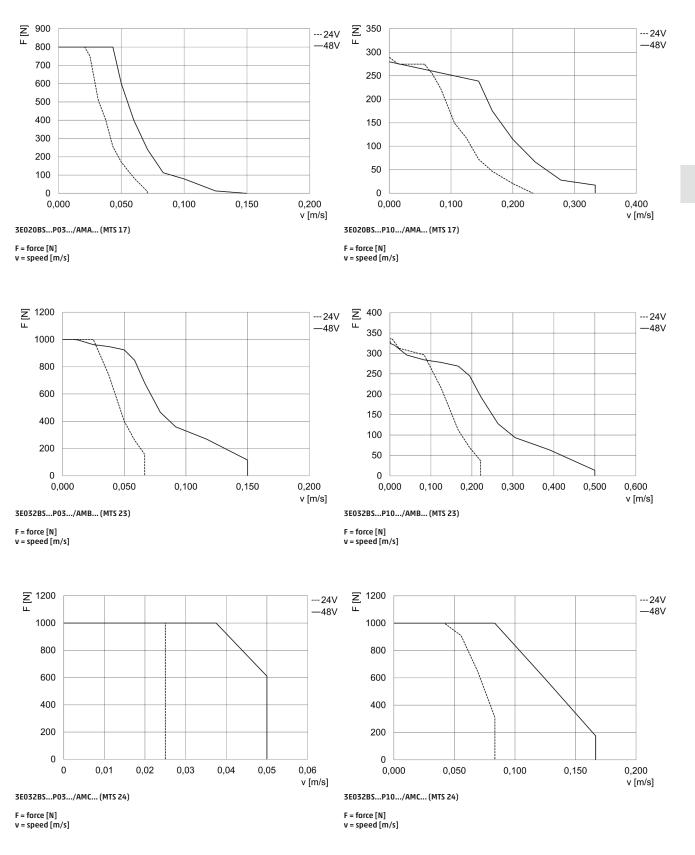
3E	020 BS 0100 P10 M / AM E 0 E - EC SF
3E	SERIES
020	SIZE 020 = 20 032 = 32
BS	TRANSMISSION BS = recirculating ball screw
0100	STROKE See table of mechanical characteristics
P10	SCREW PITCH PO3 = 3 mm P10 = 10 mm
М	CONSTRUCTION M = male F = female
	EXTENDED ROD () = rod extended with mm
АМ	MOTOR CONNECTION AM = Kit Mod. AM PM = Kit Mod. PM
E	MOTOR A = MTS 17 B = MTS 23 C = MTS 24 E = DRVI-24ST (for size 32 only) F = DRVI-24ST (for size 32 only) G = DRVI-24EC (for size 32 only)
0	BRAKE 0 = without brake B = with brake
E	ENCODER VARIANTS 0 = without encoder (for motor A, B, C only) E = with encoder (for size 32 only)
EC	TYPE OF COMMUNICATION (for motor E, F, G only) PN = Profinet CO = CanOpen EC = Ethercat EI = Ethernet IP
SF	ADDITIONAL FUNCTIONS (for motor E, F, G only) = No additional function SF = STO (not certified)

2


Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

COMPACT ELECTROMECHANICAL CYLINDERS **SERIES 3E - DIMENSIONAL CHARACTERISTICS**

Configuration of cylinder with in line motor AM


RT	E2
E3	

Mod.	Size	Motor	АМ	AF	BG	Е	E2	KF	КК	L1 +	_ø ММ	R	RT	SW1	SW2	TG	WH	ZJ +	weight stroke 0 [g]	weight stroke [kg/m]
/AMA00	20	MTS-17-18-050-0-0-S-C	16	11	10	35	42,5	M6	M8x1,25	176	14	16	M4	13	13	24	7,5	184	800	2,57
/AMAB0	20	MTS-17-18-050-0-F-S-C	16	11	10	35	42,5	M6	M8x1,25	206	14	16	M4	13	13	24	7,5	214	910	2,57
/AMB00	32	MTS-23-18-060-0-0-S-C	19	13	10	42	56,4	M8	M10x1,25	163	14	19	M5	13	17	32,5	7,5	171	1000	3,64
/AMBOE	32	MTS-23-18-060-0-0-E-C	19	13	10	42	73,5	M8	M10x1,25	189	14	19	M5	13	17	32,5	7,5	196	1100	3,64
/AMBBE	32	MTS-23-18-060-0-F-E-C	19	13	10	42	73,5	M8	M10x1,25	230	14	19	M5	13	17	32,5	7,5	237	1200	3,64
/AMC00	32	MTS-24-18-250-0-0-S-C	19	13	10	42	60	M8	M10x1,25	211	14	19	M5	13	17	32,5	7,5	218	1980	3,64
/AMCOE	32	MTS-24-18-250-0-0-E-C	19	13	10	42	77,5	M8	M10x1,25	235	14	19	M5	13	17	32,5	7,5	243	2080	3,64
/AMCBE	32	MTS-24-18-250-0-F-E-C	19	13	10	42	77,5	M8	M10x1,25	276	14	19	M5	13	17	32,5	7,5	284	2180	3,64

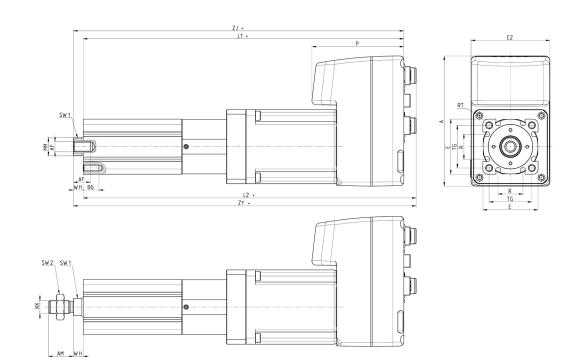
Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

FORCE-SPEED CURVES OF CYLINDER MOTOR IN LINE AM

With DRCS series drive

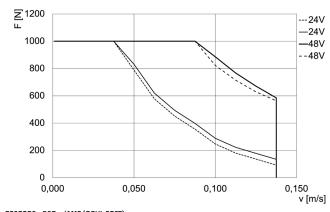
Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

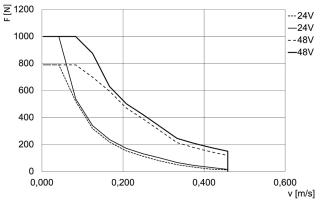
21


ELECTRIC ACTUATION

COMPACT ELECTROMECHANICAL CYLINDERS SERIES 3E - DIMENSIONAL CHARACTERISTICS

Configuration of cylinder with in line motor AM + DRVI

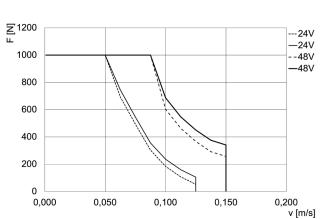




Mod.	Size	Motor	AM	AF	BG	Α	Е	E2	KF	КК	L1 +	_ø ММ	1 R	Р	RT	SW1	L SW2	TG	WH	ZJ +	L2+	ZY+	weight stroke 0 [g]	weight stroke [kg/m]
/AME0	32	DRVI-23ST	19	13	10	99	42	60	M8	M10x1,25	249	14	19	70	M5	13	17	32,5	7,5	256,5	259	266	1660	3,64
/AMEB	32	DRVI-23ST	19	13	10	99	42	60	M8	M10x1,25	290	14	19	70	M5	13	17	32,5	7,5	298	300	307	2390	3,64
/AMF0	32	DRVI-24ST	19	13	10	99	42	60	M8	M10x1,25	275	14	19	70	M5	13	17	32,5	7,5	282,5	285	292	2240	3,64
/AMFB	32	DRVI-24ST	19	13	10	99	42	60	M8	M10x1,25	316	14	19	70	M5	13	17	32,5	7,5	324	326	333	2970	3,64
/AMG0	32	DRVI-24EC	19	13	10	99	42	60	M8	M10x1,25	254	14	19	70	M5	13	17	32,5	7,5	261,5	264	271	1700	3,64
/AMGB	32	DRVI-24EC	19	13	10	99	42	60	M8	M10x1,25	295	14	19	70	M5	13	17	32,5	7,5	303	305	312	2430	3,64

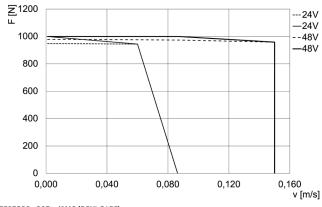
Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

FORCE-SPEED CURVES MOTOR CYLINDER IN LINE AM + DRVI



3E032BS...P03.../AME (DRVI-23ST) F = force [N] v = speed [m/s]

Continuous lines = peak force of the actuator



v = speed [m/s] Continuous lines = peak force of the actuator

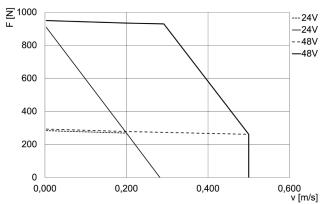
Dashed lines = nominal force of the actuator

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

3E032BS...P03.../AMG (DRVI-24EC) F = force [N]

v = speed [m/s]

Continuous lines = peak force of the actuator


Dashed lines = nominal force of the actuator

3E032BS...P10.../AME (DRVI-23ST) F = force [N] v = speed [m/s]Continuous lines = peak force of the actuator Dashed lines = nominal force of the actuator

∑1200 -24V ш –24V 1000 --48V -48V 800 600 400 200 0 0,000 0,100 0,200 0,300 0,400 0,500 0,600 v [m/s]

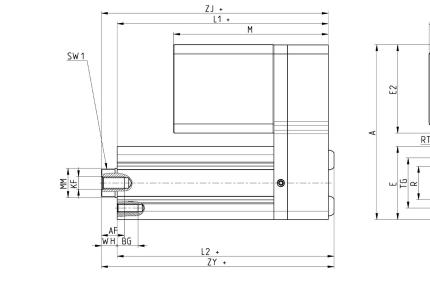
Dashed lines = nominal force of the actuator

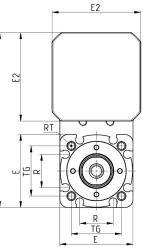
3E032BS...P10.../AMG (DRVI-24EC) F = force [N] v = speed [m/s] Continuous lines = peak force of the actuator

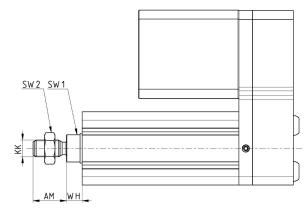
Dashed lines = nominal force of the actuator

2

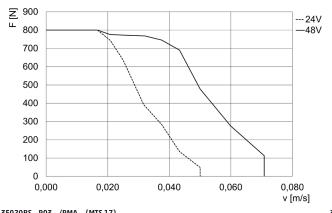
K

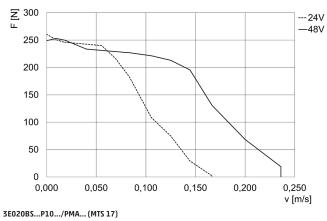

CAMOZZI




COMPACT ELECTROMECHANICAL CYLINDERS SERIES 3E - DIMENSIONAL CHARACTERISTICS

Configuration of cylinder with parallel motor PM

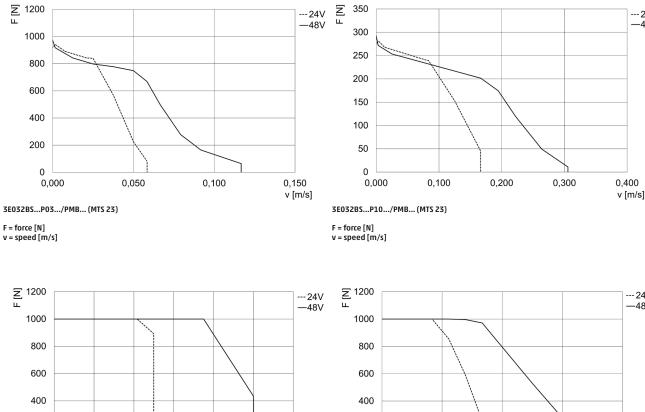


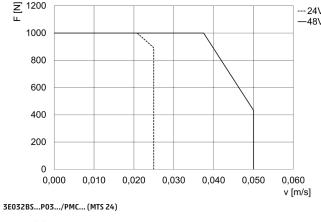

Mod.	Size	Motor	АМ	AF	BG	E	E2	KF	М	A	кк	L1 +	L2+	ø₩₩	1 R	RT	SW1	. swz	2 TG	WH	ZJ +	ZY+	minimum strok suggested ^(A)	e weight stroke 0 [g]	weight stroke [kg/m]
/ PMA00	20	MTS-17-18- 050-0-0-S-C	16	11	10	35	42,5	M6	74	83,5	M8x1,25	101	104	14	16	M4	13	13	24	7,5	109	112	10	890	2,57
/ PMAB0	20	MTS-17-18- 050-0-F-S-C	16	11	10	35	42,5	M6	104	83,5	M8x1,25	101	104	14	16	M4	13	13	24	7,5	109	112	10	1000	2,57
/ PMB00	32	MTS-23-18- 060-0-0-S-C	19	13	10	42	56,4	M8	67	116,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	10	1240	3,64
/ PMB0E	32	MTS-23-18- 060-0-0-E-C	19	13	10	42	56,4	M8	92,5	134	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	10	1340	3,64
/ PMBBE	32	MTS-23-18- 060-0-F-E-C	19	13	10	42	56,4	M8	133,5	134	M10x1,25	103	106	14	19	M5	M5	17	32,5	7,5	111	114	40	1440	3,64
/ PMC00	32	MTS-24-18- 250-0-0-S-C	19	13	10	42	60	M8	114,5	118,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	20	2200	3,64
/ PMCOE	32	MTS-24-18- 250-0-0-E-C	19	13	10	42	60	M8	139	136	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	45	2320	3,64
/ РМСВЕ	32	MTS-24-18- 250-0-F-E-C	19	13	10	42	60	M8	180	136	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	85	2420	3,64

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

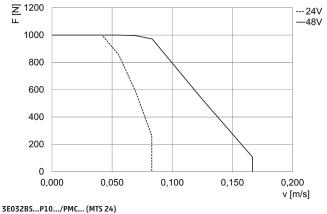
(A) Minimum stroke for L1 to be greater than M, see "mechanical characteristics" for minimum cylinder stroke.

FORCE-SPEED CURVES MOTOR CYLINDER IN PARALLEL PM



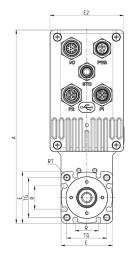


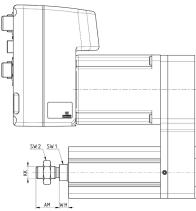
F = force [N] v = speed [m/s]



--- 24V

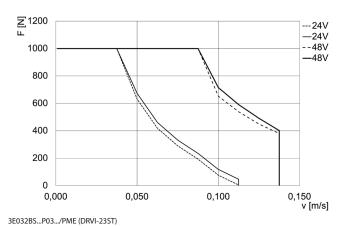
—48V

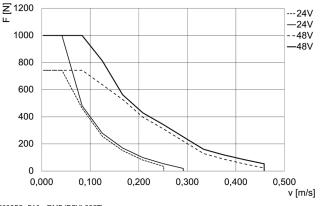




COMPACT ELECTROMECHANICAL CYLINDERS SERIES 3E - DIMENSIONAL CHARACTERISTICS

Configuration of cylinder with in parallel motor PM + DRVI

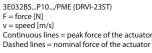



Mod.	Size	Motor	АМ	AF	BG	E	EZ	KF	м	P	A	кк	L1 +	L2+	_ø ММ	IR	RT	SW1	SWZ	tG	WH ZJ +	ZY+	minimum strok suggested ^(A)	e weight stroke 0 [g]	weight stroke [kg/m]
/ PME0	32	DRVI-23ST	19	13	10	42	60	M8	153	70	157,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5 110,5	113,5	60	1900	3,64
/ PMEB	32	DRVI-23ST	19	13	10	42	60	M8	194	70	157,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5 110,5	113,5	100	2630	3,64
/ PMF0	32	DRVI-24ST	19	13	10	42	60	M8	179	70	157,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5 110,5	113,5	80	2480	3,64
/ PMFB	32	DRVI-24ST	19	13	10	42	60	M8	220	70	157,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5 110,5	113,5	120	3210	3,64
/ PMG0	32	DRVI-24EC	19	13	10	42	60	M8	158	70	157,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5 110,5	113,5	60	1940	3,64
/ PMGB	32	DRVI-24EC	19	13	10	42	60	M8	199	70	157,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5 110,5	113,5	100	2670	3,64

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com This document contains a description of the products offered by Camozzi Automation at time of publication. For more complete and up to date information about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camozzi.com/

^(A) Minimum stroke for L1 to be greater than M, see "mechanical characteristics" for minimum cylinder stroke.

FORCE-SPEED CURVES MOTOR CYLINDER IN PARALLEL PM + DRVI



F = force [N] v = speed [m/s]

Continuous lines = peak force of the actuator

Dashed lines = nominal force of the actuator

∑ 1200

1000

800

600

400

200

0

v = speed [m/s]

∑1000

800

600

400

200

0

0,000

ш

0,000

3E032BS...P10.../PMF (DRVI-24ST) F = force [N]

Continuous lines = peak force of the actuator

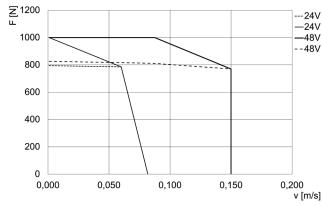
Dashed lines = nominal force of the actuator

0,100

0,200

0,300

ш



3E032BS...P03.../PMF (DRVI-24ST) F = force [N]

v = speed [m/s]

Continuous lines = peak force of the actuator

Dashed lines = nominal force of the actuator

3E032BS...P03.../PMG (DRVI-24EC)

F = force [N]

v = speed [m/s]

Continuous lines = peak force of the actuator Dashed lines = nominal force of the actuator

3E032BS...P10.../PMG (DRVI-24EC) F = force [N] v = speed [m/s] Continuous lines = peak force of the actuator

Dashed lines = nominal force of the actuator

S.S.S.S.S.

0,200

0,600

v [m/s]

ELECTRIC ACTUATION

2

24V

-24V

-48V

-48V

0,400 v [m/s]

-24V

—24V

--48V

-48V

0,400